

Product Features

Frequency: 1.9GHz ~ 2.2GHz

Gain: 16.1dB@2GHz

Saturated Pout (dBm): 48dBm@2GHz

PAE: 61.5%@2GHz

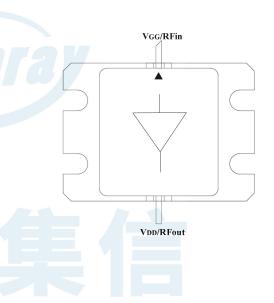
 V_{DD} Power Supply 28V, I_{DO} 300mA

Package: PJ (metal package)

General Description

BRGF021050PJG is is an internally matched power amplifier designed using the GaN HEMT process with 28V power supply. The power added efficiency is high. And thanks to the internal matching design, users can apply it to the system design with only a few external devices. The product adopts metal ceramic shell package, which has good reliability. The product is compact and easy to install, suitable for commercial and special communication applications.

Applications


Power Amplification Stage for Wireless

Infrastructure

Test and Measurement Equipment

Universal Transmitters and Jammers

Functional Block Diagram

Ordering Information

Part Number	Package	Description
BRGF021050PJG	РJ	1.9 GHz to 2.2 GHz Internal Matched PA

V2.0.1 Tel: 0086+4006786538-810 1 web: www.bonray.net

Absolute Maximum Ratings

Parameters	Values
Gate drain breakdown voltage (BV _{DG})	100V
Gate pressure range (V _{GG})	-6 to 0V
Drain current (I _D)	6A
Gate current (I _G)	14mA
Continuous dissipated power (P _D)	75W
Continuous wave input power (P _{IN})	37dBm
Channel temperature (T _{CH})	275 °C
Mounting temperature (30 seconds)	245 °C
Storage temperature	-65°C ~ +150°C
Operating temperature	-55°C ~ +85°C

Note: The absolute maximum rating indicates the limit value that the device can withstand, exceeding the absolute maximum rating may cause permanent damage to the device. Working under absolute maximum rating conditions for a long period of time will affect the reliability of the device. Please pay attention to good heat dissipation under high temperature operation.

Recommended Working Conditions

Parameters	Values
Drain voltage (V _{DD})	+28V
Drain static current (I _{DQ})	300mA
Gate voltage (V _{GG})	2.4 V
Channel temperature (T _{CH})	225 °C
Continuous dissipated power CW (P _D)	62W (25 ° C)

Note: Power amplifier tube electrical specifications are tested under specified test conditions. Electrical performance is not guaranteed when the test specifications are exceeded.

Impedance Mismatch

Symbol	Parameters	Тур.	
VSWR	Impedance mismatch	5:1	
VSWK	Ruggedness	3.1	

Test Conditions: DEMO board test, $=T_A25$ °C,

 V_{DD} =+28V, I_{DQ} =300mA, Freq=2GHz, CW wave, =50W

 $P_{out} test; \\$

Thermal Parameters

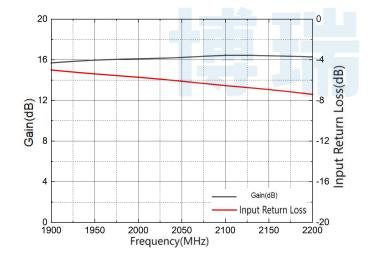
Parameters	Test Conditions	Value	Units
Thermal resistance (θ_{JC})	Dc bias tested at 85 ° C	3.3	°C/W

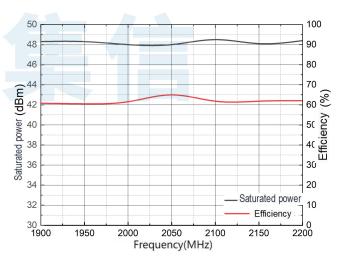
Note: $\theta_{\text{JC}}\,$ to measure the thermal resistance to the

bottom of the tube housing;

ESD Warnings

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

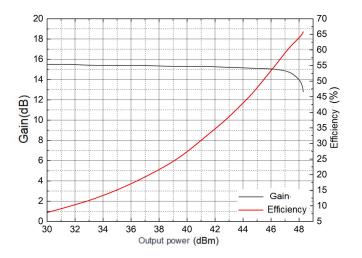

Rf Characteristics: Evaluation Board (1.9GHz ~ 2.2GHz) Test Data

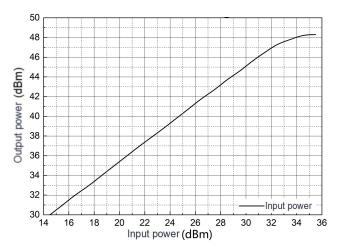

Parameters	Тур.				Units			
Frequency	1900	1950	2000	2050	2100	2150	2200	MHz
Gain	15.7	16.0	16.1	16.2	16.5	16.4	16.3	dB
Small Signal Input Return	-5.0	-5.4	-5.7	-6.1	-6.6	-6.9	-7.4	dB
Drain Current @P _{sat}	3.74	3.77	3.45	3.25	3.87	3.53	3.82	A
Output Power @P _{sat}	48.3	48.3	48.0	48.0	48.5	48.1	48.4	dBm
Power Gain @P _{sat}	12.6	12.7	12.5	12.1	12.7	12.7	13.9	dB
PAE@P _{sat}	60.88	60.53	61.55	64.98	61.82	61.82	62.06	%

Test Conditions: Temp =+25°CV_{DD}, =+28V, =I_{DO}300mA, CW test;

Note: defined as the saturation P_{sat}power output of the evaluation board.

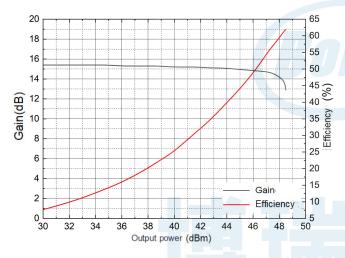
Typical Performance (Evaluation board: 1.9GHz-2.2GHz, Temp =+25°C, =+28V, =300mA, CW wave testV_{DD}I_{DO})

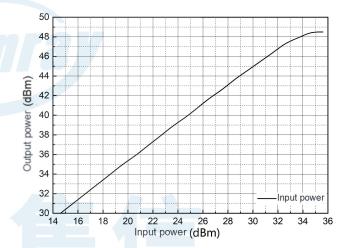




Input Return, Gain vs Freq

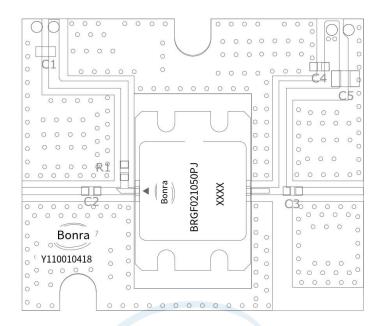
Saturation Power, Efficiency, vs Freq

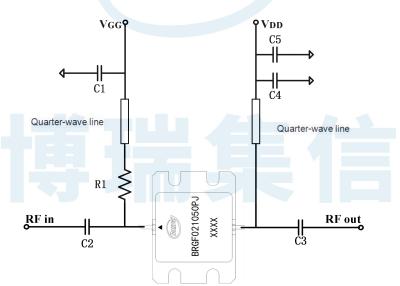




Gain, Added Efficiency vs Pout@2GHz

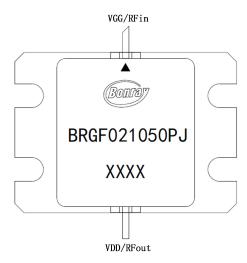
Pout vs Pin@2GHz


Gain, Added Efficiency vs Pout @2.1GHz


Pout vs Pin@2.1GHz

Typical Application Schematic

Assembly Diagram


Bill of Material

Designator	Package	Value	Part Number
C2,C3,C4	0805	100pF	VJ0805D101JXPAJ
C1	1206	4.7 uF	GRM31CC72A475KE11#
C5	1210	10uF	GRM32EC72A106KE05#
R1	0805	30ohm	CRT0805-FX-30R0ELF

V2.0.1 Tel: 0086+4006786538-810 6 web: www.bonray.net

Pin Configuration and Description

Pin Number	Pin Name	Description
1	VGG/Rfin	Gate, gate voltage regulation, RF signal 50Ω system input
2	VDD/Rfout	Drain, drain voltage input, RF power signal 50Ω system output
-	Package Base	Device housing, to be welded or well coated on the bottom Mount to the heat dissipation and ground network substrate to ensure good heat dissipation and RF grounding

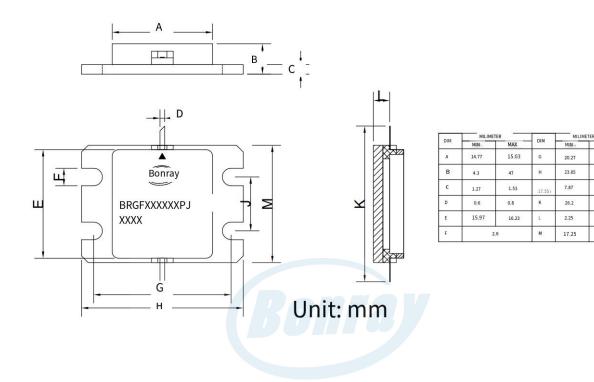
Power-on Sequence

- 1. Set the gate voltage (V_{GG}) to -5V;
- 2. Set drain voltage (V_{DD}) to +28V, current limit 6A;
- 3. Turn on the gate voltage;
- 4. Turn on drain voltage;
- 5. Increase the gate voltage (V_{GG}) so that the drain current is 300mA;
- 6. Input RF signal;

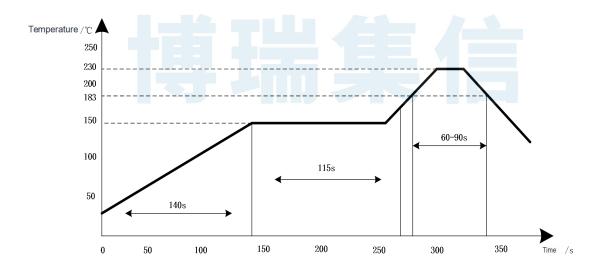
Note: When the circuit is designed, the offset voltage needs to have a timing protection circuit to ensure that it is fully powered on before adding, and ensure that it is reduced to below 5V when powering off, before starting to power off; $V_{GG}V_{DD}V_{DD}V_{GG}$ Especially in TDD Application, gate Supply Voltage decoupling capacitors need to be rigorously evaluated to meet switching speed requirements.

Power-off Sequence

- 1. Turn off the RF signal;
- 2. Reduce the gate voltage (V_{GG}) to -5V;
- 3. Turn off the drain Supply Voltage voltage;
- 4. Turn off the gate Supply Voltage voltage;


24.15

8.13


26.8 2.55

Package Dimensions (mm)

Recommended Soldering Temperature Profile

