

Product Features

Frequency: DC ~ 3.8GHz

Gain: 17.8dB@1.5GHz

Psat: 49.3dBm@1.5GHz

PAE: 53.6% (1.5GHz,Pout=49.3dBm)

Operation Voltage: 28V, I_{DO} 500mA

Package: PC (ceramic seal)

General Description

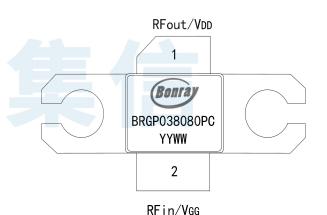
The BRGP038080PC is a pre-matched transistor designed using the GaN HEMT process, using a +28V drain supply to achieves 80W (49dBm) in the DC to 3.8GHz with a power added efficiency PEA (PAE) up to 50%. The advanced GaN HEMT process provides high efficiency, high gain and wide bandwidth. Its input terminal adopts pre-matching design, has good high frequency characteristics, reduces the sensitivity of external matching circuit, and is convenient for users to realize high frequency and ultra-wide band schemes through external matching design. The package form is a metal ceramic package with flange, excellent thermal conductivity, and the user can choose a variety of ways to install. This product is suitable for microwave communication, radar and other fields.

Application

Power Amplification Stage for Wireless

Infrastructure

Test and Measurement Equipment


Commercial and Military Radars

Universal Transmitters and Jammers Ultrashort

wave Communication Equipment

Functional Block Diagram

Ordering Information

Part Number	Package	Description
BRGP038080PC	PC	DC ~ 3.8GHz 80W GaN Transistor

V2.0.2

web: www.bonray.net

tel: 0086+4006786538-810

Absolute Maximum Ratings

Parameters	Values
Gate Drain Breakdown Voltage (BV_{DG})	100V
Gate Voltage Range (V _{GG})	-6 to 0V
Drain Current (I _D)	7.5 A
Gate Current (I _G)	19mA
Continuous Dissipated Power (P _D)	86W
Channel Temperature (T _{CH})	275 °C
Mounting Temperature (30 seconds)	245 °C

Note:Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the deviceat these conditions is not implied. Please pay attention to good heat dissipation under high temperature operation.

Recommended Operating Conditions

Parameters	Values
Drain Voltage (V _{DD})	+28V (Typ)
Drain Static Current (I _{DQ})	500mA (Typ)
Gate Voltage (V _{GG})	-2.61V (Typ)
Channel Temperature (T _{CH})	225 ° C (Max)
Continuous Dissipated Power CW (P _D)	73W (Max)
Storage Temperature	-65°C ~ +150°C
Operating Temperature	-55°C ~ +85°C

Note: The electrical specifications of power amplifier tubes are tested under specified test conditions. Electrical performance is not guaranteed when the test specifications are exceeded.

V2.0.2

web: www.bonray.net

Impedance Mismatch

Markers	Parameters	Тур.
VSWR	Impedance Mismatch	5:1
VSWIC	Ruggedness	5.1

Test Conditions: DEMO board test, T_A =25°C,

 V_{DD} =+28V, I_{DQ} =500mA, Fre=1GHz, CW, P_{out} =80W;

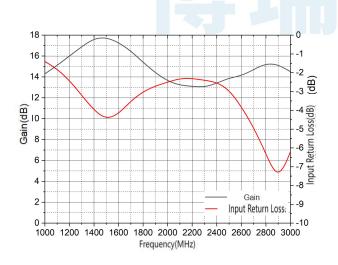
Thermal Parameters

rameters	Test Conditions	Value	Units
Thermal resistance ()θ _{JC}	CW wave is tested	2.2	°C/W
Channel temperature ()T _{ch}	at 70 ° C	225	°C

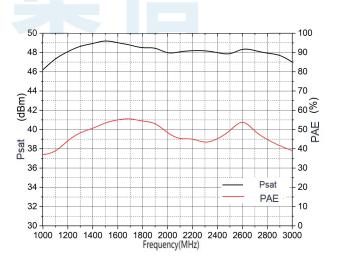
Note: θ_{JC} to measure the thermal resistance to the bottom of the package;

ESD WARNING

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

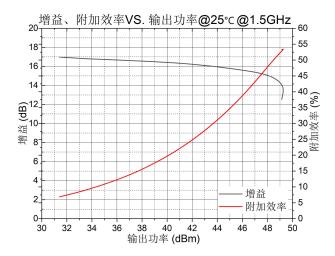

Typical Performance (Evaluation board data)

	Evaluation Board (1.0GHz ~ 3.0GHz) Test Data					
Parameters			Тур.			Units
Frequency	1000	1500	2000	2500	3000	MHz
Gain	14.3	17.8	13.6	13.9	14.5	dB
Small Signal Input Return Loss	-1.4	-4.5	-2.5	-2.9	-6.2	dB
Drain Current @P _{sat}	3.566	5.487	4.065	3.833	4.082	A
Pout (dBm)@P _{sat}	46.2	49.3	47.8	47.7	47.0	dBm
Pout (dBm)@P _{sat}	41.6	86.0	60.9	58.8	49.7	W
PAE@P _{sat}	36.9	53.6	48.0	49.0	39.0	%
Power Gain @P _{sat}	9.47	13.77	9.91	9.78	9.87	dB

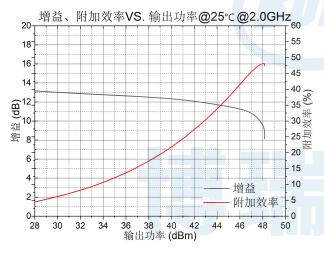

Test Conditions: Temp =+25°C, V_{DD} =+28V, I_{DQ} =500mA, CW;

Note: P_{sat} defined as the maximum power output by the evaluation board;

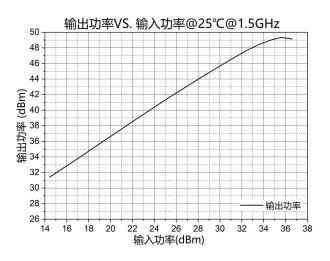
Typical Performance(Evaluation board :1.0GHz-3.0GHz, Temp =+25°C, V_{DD} =+28V, I_{DQ} =500mA, CW wave test)

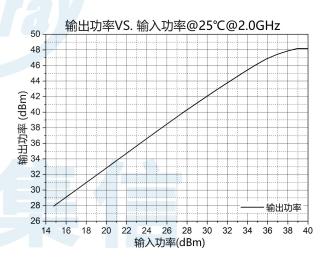


Psat,PEA vs. Freq @25℃

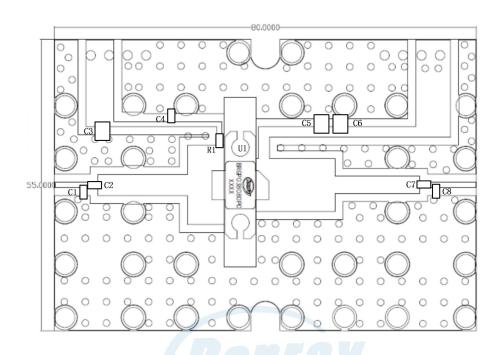

V2.0.2

web: www.bonray.net


tel: 0086+4006786538-810


Power Gain, PEA and output power curves (1.5GHz)

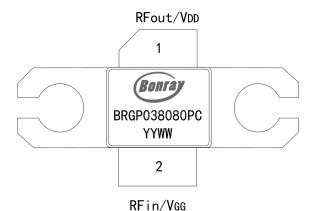
Power Gain, PEA and output power curve (2.0GHz)


output power and input power curves (1.5GHz)

output power and input power curve (2.0GHz)

PCB Evaluation Board

Bill of Material


Designator	Package	Description	Part Number
U1	PC	80W pre-matched transistor	BRGP038080PC
C1	0603	0.5 pF	GRM1885C1HR60WA01
C2,C4	0603	10pF	GRM1885C2A100JA01
C7	0603	20PF	GQM1875C2E200FB12#
C8	0603	0.1 pF	GQM1875G2ER10BB12#
R1	0603	51 Ω	RC0603FR-0751R1L
C3,C5,C6	1210	10uF	GRM32EC72A106KE05

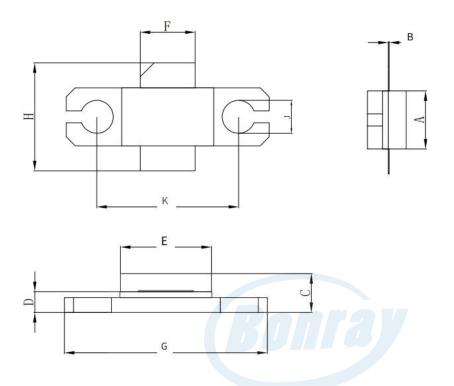
V2.0.2

web: www.bonray.net

Pin Configuration and Description

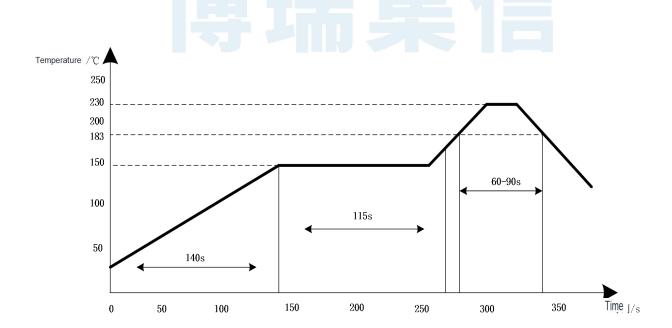
Pin serial number	Pin name	Description
1	RFout/V _{DD}	Drain voltage / RF Output matched to 50 ohms;
2	RFin/V _{GG}	Gate voltage / RF Input matched to 50 ohms;
-	Package Base	Source connected to ground;

Power-on Sequence


- 1. Set the grid voltage (V_{GG}) to -5V;
- 2. Set drain voltage (V_{DD}) to +28V, current limit 10A;
- 3. Turn on the grid voltage;
- 4. Turn on drain voltage;
- 5. Increase the gate voltage (V_{GG}) so that the drain current is 500mA;
- 6. Input RF signal;

Power-off Sequence

- 1. Turn off the RF signal;
- 2. Reduce the grid voltage (V_{GG}) to -5V;
- 3. Turn off the drain Supply Voltage voltage;
- 4. Turn off the grid Supply Voltage voltage;


Note: In circuit design, bias voltage under-voltage protection is needed with timing protection circuits to ensure that V_{GG} is fully powered up before V_{DD} is applied, and that V_{DD} is lowered to below 5V before V_{GG} is powered down, especially in T_{DD} applications. The gate driving decoupling capacitor needs to be carefully evaluated to meet the switching speed requirements.

Package Dimensions (mm)

DTM.	Units man		
DIM	MIN	MAX	
A	5, 67	5, 93	
В	0, 06	0, 15	
С	3, 18	4. 19	
D	1. 93	2.23	
E	9 9.2		
F	5, 37 5, 63		
G	20.17 20.43		
Н	10,3 11.3		
J	3.3±0.13		
K	14.2±0.13		

Recommended Soldering Temperature Profile

V2.0.2

web: www.bonray.net